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Common mechanism links spiral wave meandering and wave-frortobstacle separation
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Spiral waves rotate either around a circular core or meander, inscribing a noncircular pattern. The medium
properties determining the transition of meandering were found to be equivalent to those defining the transition
from wave tip separation and attachment around the end of an unexcitable strip of thickness comparable to zero
velocity wave-front thickness. The transition from circular to noncircular tip movement is analytically pre-
dicted by the balance of the diffusive fluxes within the boundary layer at the wave tip.
[S1063-651X%97)11701-9
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Spiral waves appear in many excitable chemical and bioeiated with the transition between wave-front—obstacle at-
logical media[1]. The spiral wave tip either rotates around atachment and separation following a wave-obstacle interac-
circular unexcited core or meanders, inscribing a noncirculation [Fig. 1(a)]. We found that the minimal distance that the
pattern often similar to that of a multipetal flower. From Spiral wave tip can approach its refractory tail without me-
numerical studies of FitzHugh-Nagumo-like models for a va-andering is of the order df ., the wave-front thickness of
riety of medium parameters, Zykoj2] and Winfree[3] a wave propagating with zero velocity. Following interaction
found a distinct boundary separating meandering from circuwith an unexcitable strip of thickneds,;, there are two
lar tip movement, suggesting that transitions between differpossible outcomes. If the wave tip wraps itself around the
ent modes of tip movement were dependent on certain meénd of this unexcitable strip, then it will meander if the strip
dium parameter values. is removed. Alternatively, if the wave tip separates from the

The transition from circular spiral tip motion to meander- end of the strip, then removal will result in circular spiral tip
ing is known to occur when the spiral tip approaches itsmotion. Over a range of medium parameters, this transition
refractory tail. The minimal distance between the spiral tipcan be accurately predicted by approximating the diffusive
and refractory tail associated with the meandering transitiofluxes within the boundary layer at the wave [10].
and its relation to medium properties, though, is uncertain. Here we consider nonlinear reaction-diffusion equations
Recently numerical studies of Karrid] showed that mean- Of the FitzHugh-Nagumo class:
dering corresponds to the superposition of two rotating spiral
wave solutions. He found that the reaction-diffusion field at ou  d%u  Ju

points located on the wave front near the minimal core radius T + v +f(u)—V, (1)
associated with the meandering transiti@etermined nu- y

merically) displayed quasiperiodic variations originating

from a supercritical Hopf bifurcation. Analytical investiga- oV

tions of spiral core stability by Kesslast al. [5] based on — —enu=Vv), (3]

kinematic theory did not confirm this behavior, probably be-
cause their analysis was performed within a kinematic frame-
work that differed significantly from the framework of Kar- where u(x,y,t) is a dimensionless function similar to the
ma’s analysis[4]. Moreover, the kinematic approach is transmembrane potential in a biological excitable cell and
limited by the assumption that the wave radius of curvature/(x,y,t) is a dimensionless function similar to a slower re-
is large compared with the wavelength, a condition that iscovery current. Using this electrical analogy, we consider
not fulfilled at the spiral tip[6]. Barkley developed a phe- reaction-diffusion fluxes to be the flow of a char@earreny
nomenological model that reproduced complex spiral tipdown a potential gradient. The nonlinear source of charge is
movement{7]. However, based on the ordinary differential determined by the functiori(u), that represents the reactive
equation representation, this model did not describe the trarmproperties of the medium. We considgu) as a piecewise
sition to meandering and did not provide a minimal corelinear function similar to the current-voltage relationship of a
radius associated with a meandering transition boundargonlinear oscillatofFig. 1(b)]. The slope of this function,
since it neglected generic diffusive properties of an excitableontrols one aspect of excitability by determining the maxi-
medium. mum current that is available to excite adjoining regions of
In this paper, we show that the conditions associated witlthe medium: larger values of result in a more excitable
the meandering transition are equivalent to conditions assanedium while smaller values of result in a less excitable
medium. Excitability is also influenced bgn;, m,, and
ms, the zeros of (u) with respect to the equilibrium value of
*Author to whom correspondence should be addressed. Fathe recovery variableYe,. A highly excitable medium is
(919/684-8666. Electronic address: josefhodgkin.mc.duke.edu  determined bym,—m;<<m;—m,. The factorsy and ¢ (the
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A
B Fast and Slow Nullclines
v
V=1U) ' FIG. 2. Shown are four spirals of increasing wave-front charge
A : A as defined by the slope of the fast null-clineSpiral waves were
m Tm2 m:\ m compgtgd fore=0.018, a=2.75, andy=7 yvhlle vgry_mgk aqq
were initiated by a wave break created with the initial conditions.

The spiral tip was tracked by following the path of the unstable
point u=m,, V=V~=0. Upper panelgleft, A=0.86 and right,
Voyu A=0.885 show circular spiral tip movement. Wher=0.905, the
wave-front thickness is comparable to the core diameter and the tip
begins to meanddiow left pane). When\ is further increased to

FIG. 1. (a) shows the computed temporal sequeffoem leftto .93 meandering becomes very pronounged right panel.
right) of wave-front—obstacle interaction resulting in separation of

the excitation wave from the unexcitable obstacle. The left frame
demonstrates a fully formed spiral tip, which later separates from
the strip(right frame. The width of the strip is of the order of the
critical wave-front thickness shown in both fragments by a thin
white line bounding the tip area. Computations were performed
over a 170170 grid using an implicit fractional-step methél

with Ax=Ay=0.25, At=0.2. (b) shows the null-clines of the re-
action diffusion system of Eq¢l) and(2). We consideu(x,y,t) as
similar to the transmembrane potential of an excitable cardiac or
nerve cell,f(u) is similar to the current-voltage relationship of the
cellular excitation process, an(x,y,t) is similar to slow recovery
current. The functiorf(u) is a piecewise linear function, where the
slope of each linear elemer, refers to the rate of the fast excita-
tion process and influences medium excitability. The slppefers

to the rate of the slow recovery process. For a 1D excitable cable
and piecewise lineaf(u) the basic characteristics of wave propa-
gation such as pulse propagation velocity, wave-front thickness, and
the minimal wave-front thickneds,; associated with a nonpropa-
gating wave have been determined 210].

ratio of fast to slow time constantsare relaxation param-

eters ands<1 [a=(Mg—my)/(My—m,)]. FIG. 3. Shown is the meandering transition coinciding with the

| der t | the hvpothesis that tion f wave-front—obstacle separation-attachment boundary. Spiral waves
n oraer to expiore the hypothesis that no separation fronj, oo computed foe=0.018, =2.75, andy=7 while varyingA.

the obstacle '_S‘ equn_/alent to me_anderlng, we observe pper panelsh=0.93 (from left to right), demonstrate the excita-
obstacle-wav_e interactions for a variety of model paramef[erqion wave tip, which wraps around the unexcitable sttt upper

A, a, ande, in order to alter the wave-front charge while nanej approaching the refractory tail. This wave fragment mean-
keeping the kinetics of recovery constant. We observed thgers after obstacle removéight upper panel The width of the
transition from circular to noncircular tip movement as fol- sriplike obstacle(thin straight white ling is of the order of the
lows (Fig. 2). starting with a spiral rotating around a large wave-front thicknesgwhite thin layer bounding the wave JipAs
core (left upper pangl as we increased the wave-front we decreased the wave-front charge by decreasifig=0.86) the
charge(by increasing\), the spiral tip rotated about circular wave tip separated from the obstadlewer left panel. This wave
cores of progressively smaller radiight upper paneluntil ~ fragment rotated around a small unexcited circular core after ob-
the tip approached the refractory tail by a critical distancestacle removallow right panel.
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FIG. 4. The coincidence of the meandering transition with the FIG. 5. The boundary defining the theoretical transitions be-
wave-front—obstacle separation-attachment bouné@njn the (e, tween circular and noncircular tip motiofa) illustrates qualitative
a) plane forn=0.67 andy=6. Squares illustrate the computed me- @greement of Eq(3) (in a wide range ofa) with the multivalued
andering transition while circles refer to a computed wave-front-eandering transition in the, @) plane(y=6, =0.5) as described
obstacle separation-attachment boundaufid line is a quadratic N [2,6]. (b) illustrates quantitative agreement within the range of
regressions = 0.028- 0.03x+ 0.0087+2). Computations were per- a=(2.8, 3.0. The solid line is the analytical estimation of the me-
formed for the striplike unexcitable obstacles with the width that is2ndering transition boundary determined by E8).and the circles
of the order of the wave-front thicknegsee Fig. 18)]. (b) ilus-  refer to numeric estimates.
trates the “flower garden'{tip trajectorie$ for points indicated in
(@) by numbers 1,2,3,4,5 fa¥=2.3;£=0.032, 0.048, 0.057, 0.065, >| ; after the strip is removed from the mediutow right
0.075 and numbers 6,7,8,9,10 for3.0; £=0.01, 0.0117, 0.0129, pane).
0.0157, 0.0175, respectively. Numerical studies demonstrated the equivalence between

conditions for the wave-front—obstacle attachment-

When the distance was less than this critical distance, the tipeparation boundary and the boundary of the transition to
meanderedlow panels left and right, respectively meandering in thée, @) plane[Fig. 4@] over a wide range

In our numerical experiments the critical distance be-of medium parameters. Moreover, small changes in the pa-
tween the spiral tip and a refractory tail associated with theameters near the transition boundary resulted in a variety of
meandering transition was always comparable to that of th8ower configurations quite similar to those associated with
zero velocity wave-front thickness, ;. Figure 3 demon- the cubicf(u) [2,3,7] as shown in Fig. &).
strates that if the tip approaches the refractory tail within a The coincidence between the meandering transition and
distance that is of the order af,;; (thin white strip between obstacle attachment-separation transition suggests a common
the tip and the refractory tajli.e., the tip is able to make a mechanism for both transition processes, which is based on
turn of diameterL ., while maintaining attachment to the the balance of reaction-diffusion fluxes within a small
strip boundary(upper left panglthen meandering results af- boundary layer of the order of the zero velocity wave-front
ter removal of the strigupper right panel Similarly, if the  thicknessL .. Recently we showed that by discretizing this
charge available in the wave front is insufficient to extendboundary layer with squares of the order of the zero velocity
the tip around the corner of the strifow left panel, lower wave-front thicknessl ., it was possible to develop an
excitability, \) then the wave tip cannot approach the refrac-analytical approximation of the separation—no separation
tory tail sufficiently close. Consequently, the tip will rotate boundary[10]. Whether the wave tip maintained the attach-
around a small circular unexcited core with a diametemment or separated from the obstacle boundary depended on
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what we called a charge balan€g, derived from the inte- the end of an unexcitable strip of the order of the wave-front
gral form of the Eqs(1) and(2) obtained by averaging them thicknesg, then it will meander if the strip is removed. Thus,
within a piecewise rectangular approximation of the boundwe demonstrate that the transition from circular to noncircu-
ary layer over the wave-front formation tim€g was de- lar spiral tip motion is determined by the same conditions for
fined in terms of a relationship between the charge availablgh€ transition from wave tip separation to attachment of the
within the wave front, the charge required to ignite thewave to the end of a thifof the order of the zero velocity
boundary layer, and the charge that leaks from the boundaryave-front thicknegsunexcitable strip and can be predicted
layer into adjacent rested medium. Whe&y>0, wave- from the medium properties by analysis of the boundary
front—obstacle attachment was maintained while wiggn ~ layer separating the spiral wave tip from the “virtual” ob-
<0, wave-front—obstacle separation occurred. For a striplikstacle[9,10]. - . _
obstacle one can find the medium parameters associated with Spiral core stability studies based on the analysis of tem-
the wave-front—obstacle separation-attachment boundaijeral flux variations at fixed pointéalong the spiral core

from the equatiorCg=0, which is given by boundary demonstrated unstable oscillating behavior at the
spiral core[4,5]. However, these analyses yielded little in-
47 a+1| 4(a+1)3 , Ay(at 1)%¢ sight about the medium conditions associated with the me-
T 2 2a—1 ala-1) " ¥ a%(a-1) andering transition and the minimal core radiiassociated

(3)  with meandering transitiorwhich are determined by a full
solution of the original partial differential equation reaction-
diffusion system. By approximating the solution of the
Fd'tzHugh-Nagumo reaction-diffusion system E¢fs.and(2)

In the region of the spiral tip, we have shown that the deli-
cate balance between reaction-diffusion fluxes in this region
and the surrounding boundary layer plays a major role in
defining different types of spiral tip motion, thus affecting
different instabilities of the spiral wave solution at points

ued meandering transition in th@, «) plane shown in X . -
: : . . near the wave tip as described [id,5]. Recognizing that
[2,3,7[Fig. Sa)]. Comparison of numerical estimates of the mall changes in the reaction-diffusion flux balance in the

meandering-no-meandering boundary and theoretical pri_oundar layer can dramatically alter spiral tip motion pro-
dictions of the wave-front—obstacle separation-attachme y lay y P P P

boundary[Eq. (3)] over a limited range ofx reveals good vides a new tool for control of spiral wave processes and, in

guantitative agreemefFig. 5(b)]. Numerical estimates out- particular, control of cardiac arrhythmias.

side this range are limited by the series approximation used We wish to acknowledge the critical assistance provided

in deriving Eq.(3) [10]. by V. N. Polotsky. His discussions were helpful in clarifying
In summary, we determined the minimal distance betweemur results. This research was supported in part by Grant No.

a spiral wave tip and its refractory tail associated with theHL32994 from the National Heart, Lung, and Blood Insti-

meandering transition. We have found that if the wave tiptute, National Institutes of Health and a grant from the Whi-

approached its tail within a distantg,;; (wraps itself around taker Foundation.

where o=1+In2, a=(mz;—m,)/(m,—m,;) [10]. Our nu-
merical studies show that the same analysis can be applied
the transition between circular and noncircular tip motion.
WhenCg<0, circular motion is expected. Wh&y>0 me-
andering is expected.

Equation(3) is in qualitative agreement with the multival-
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